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1. FACT: Analyzing Pedigree OMIC data using standard
statistical models/tests, causes

Severe inflation of false-positive signals

2. WHY? What causes the excess false-positives?

Spoiler alert. pedigrees violate the basic statistical
assumption of “i.i.d.” (independent, identically distributed) data of
Most (non-pedigree) Statistical models

3. Statistical Methods & Software that correctly
analyze Pedigree Data by modeling the dependences in
pedig ree data (result: no inflation of false-positives, retaining power)

4. Comparisons & Robustness of Pedigree Models
5. Conclusions & Recommendations
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Vast Literature Documenting

Analyzing Associations of Heritable Phenotypes
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most stat models/software, results in

SERIOUS P'VALU E IN FLATION (too many false positives)
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Not just a problem with "regression” type models

STATISTICS IN MEDICINE
Statist. Med. 18, 1517-1528 (1999}

A FRAILTY APPROACH FOR MODELLING DISEASES WITH
VARIABLE AGE OF ONSET IN FAMILIES: THE NHLBI
FAMILY HEART STUDY

KIMBERLY D. SIEGMUND,'* ALEXANDRE A. TODOROV? AND MICHAEL A. PROVINCE?

! Department of Preventive Medicine, University of Southern California, Los Angeles, U.SA.
2 Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, US.A.
* Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri, U.S.A.

SUMMARY

We use frailty models to analyse the effect of latent genetic and environmental risk factors on hazard
functions in nuclear families. The approach expresses latent risk factors (frailties) as functions of the effects of
a single major gene and shared familial risk. The latter may result from shared polygenes and/or a common
environment. Genetic frailties are modelled using a two-point distribution, and residual frailities (shared
environment, polygenes) using a gamma distribution. The two-point distribution follows the laws of
Mendelian transmission, under either dominant or recessive gene action. We describe a robust EM
approach for the joint estimation of the magnitude of genetic, covariate, gene by covariate interaction effects
while allowing residual familial correlation. We illustrate the method on coronary heart disease data from
the National Heart, Lung, and Blood Institute Family Heart Study. In addition, a simulation study shows
that ignoring possible residual correlation in disease status due to a shared familial environment leads to an
overestimate of the relative risk associated with a latent genotype. Copyright © 1999 John Wiley & Sons,
Ltd.

1. INTRODUCTION
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Gene expression in large pedigrees: @ e
analytic approaches
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Abstract

Background: We currently have the ability to quantify transcript abundance of messenger RNA (mRNA), genome-wide,
using microarray technologies. Analyzing genotype, phenotype and expression data from 20 pedigrees, the members
of our Genetic Analysis Workshop (GAW) 12 gene expression group published 9 papers, tackling some timely and
important prablems and guestions. To study the complexity and interrelationships of genetics and gene expression,

we used established statistical tools, developed newer statistical tools, and developed and applied extensions to

these toals.

Methods: To study gene expression correlations in the pedigree members (without incorporating genotype or trait
data into the analysis}, 7 papers used principal components analysis, weighted gene coexpression network analysis,
meta-analyses, gene enrichment analyses, and linear mixed models. To explore the relationship between genetics
and gene expression, 7 papers studied expression guantitative trait locus allelic heterogeneity through conditional
association analyses, and epistasis through interaction analyses. A third paper assessed the feasibility of applying
allele-specific binding to filter potential regulatory single-nucleotide polymorphisms (SNPs). Analytic approaches
included linear mixed maodels based on measured genotypes in pedigrees, permutation tests, and covariance kemels.
To incorporate both genotype and phenotype data with gene expression, 4 groups employed linear mixed maodcels,
nonparametric weighted U statistics, structural eguation maodeling, Bayesian unified framewaorks, and multiple
regression.

Results and discussion: Regarding the analysis of pedigree data, we found that gene expression is familial, indicating
that at least 1 factor for pedigree membership or multiple factors for the degree of relationship should be included in
analyses, and we developed a method to adjust for familiality prior to conducting weighted co-expression gene
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ABRSTRACT

Treating mBNA transcript abuodances as gquantitative traits and examining their relaticnships with
clinical traits have been pursued by using an analytical approach of quantitative genetics. Recently, Kraft
et al. presented a family expression association test (FEXAT) for correlation between gene expressions and
brait values with a faodly-based (sibehips) design. This statistic did not account for biclogical relationships of
related subjects, which may inflate type 1 error rate and/or decrease power of statistical tests. In this
article, we propose two new test statistics based ou a vanance-components approach for analyses of
microarray data obtained from genersl pedigrees. Gur methods accommeodate covariance between relatives
for unmeasured genetic effects and directly model covariates of clinical importance. The efficacy and
vabidity of our methods are investigated by using stoulated data voder dilferent sample sizes, laroily sizes,
and family structures. The proposed LR method has correct type | error rate with moderate to large
sample sizes regardless of family structure and family sizes. It has higher power with complex pedigrees
and similar power to the FEXAT with sibships. The other proposed FEXAT{R) method is favorable with
large family sizes, regardless of saraple sizes and faroily structare. Our methods, robust to population
stratification, are complementary to the FEXAT in expression-trait assoctation studies.

N the past few vears, there has been increasing inter-
estin genetc studies of complex diseases by combin-
ing mnformation on clinical traits, marker genotypes,
and comprehensive gene expressions. It was proposed

proach tw mapping the determinants of variation in
gene expression. [heir results suggested that the expres-
sion of most genes s affected by more than one locus
{(BrEM & al. 2002). Most complex human phenotypes
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Genome-wide QTL and eQTL analyses e
using Mendel
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Abstract

Pedigree genorme-wide assaciation studies (GWAS) (Option 29) in the current version of the Mendel software is an
optimized subroutine for performing large-scale gencme-wide guantitative trait locus (QTL) analysis. This analysis (a)
works for randormn sample data, pedigree data, or a mix of both; (b} is highly efficient in beth run time and memory
requirement; (¢} accommodates both univariate and multivariate traits; (d) works for autosomal and x-linked loci; (e}
correctly deals with missing data in traits, covariates, and genotypes; (f) allows for covariate adjustment anc
constraints among parameters; (g} uses either theoretical or single nucleotide polymorphism (SNP)-based empirical
kinship matrix for additive polygenic effects; (h} allows extra variance components such as deminant polygenic
effects and household effects; (i) detects and reports outlier individuals and pedigrees; and (j) allows for robust
estimation via the t-distribution. This paper assesses these capabilities on the genetics analysis workshop 19
(GAW19) sequencing data. We analyzed simulated and real phenotypes for both family and random sample data
sets. For instance, when jointly testing the 8 longitudinally measured systolic blood pressure and diastelic blood
pressure traits, it takes Mendel 78 min on a standard laptop computer to read, guality check, and analyze a data set
with 849 individuals and 8.3 millicn SNPs. Gencme-wide expression QTL analysis of 20,643 expression traits on 641
individuals with 8.3 million SNPs takes 30 h using 20 parallel runs on a cluster. Mendel is freely available at
http//www.genetics ucla ecu/software.
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I College of Public Health, University of Kentucky, 111 Washington Ave, Lexington, KY 40508, United States

ARTICLE INFDO ABSTRACT

Article history: Background: Trimethylamine-N-oxide (TMAO), an atherogenic metabolite species, has emerged as a
Received 20 January 2017 possible new risk factor for cardiovascular disease. Animal studies have shown that circulating TMAO
Received in revised form levels are regulated by genetic and environmental factors. However, large-scale human studies have

2 March 2017
Accepted 5 March 2017
Available online 8 March 2017

failed to replicate the observed genetic associations, and epigenetic factors such as DNA methylation
have never been examined in relation to TMAO levels,

Methods and results: We used data from the family-based Genetics of Lipid Lowering Drugs and Diet
Network (GOLDN) to investigate the heritable determinants of plasma TMAO in humans. TMAO was
not associated with other plasma markers of cardiovascular disease, e.g. lipids or inflammatory cy-
tokines. We first estimated TMAO heritability at 27%, indicating a moderate genetic influence. We used

Keywords:
Atherosclerosis
Cardiovascular disease

Genetic 1000 Genomes imputed data (n = 626) to estimate genome-wide associations with TMAO levels,
Epigenetic adjusting for age, sex, family relationships, and study site. The genome-wide study yielded one sig-
Methylation nificant hit at the genome-wide level, located in an intergenic region on chromosome 4. We subse-
Trimethylamine-N-oxide quently quantified epigenome-wide DNA methylation using the [lumina Infinium array on CD4" T-

cells. We tested for association of methylation loci with circulating TMAO (n = 847), adjusting for age,
sex, family relationships, and study site as the genome-wide study plus principal components
capturing CD4% T-cell purity, Upon adjusting for multiple testing, none of the epigenetic findings were
statistically significant.
Conclusions: Our findings contribute to the growing body of evidence suggesting that neither genetic nor
epigenetic factors play a critical role in establishing circulating TMAO levels in humans.
© 2017 The Authors, Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http:/fcreativecommons.org/licenses/by-nc-ndf4.0/).




P-value Distribution
GWAS Analysis of Quantitative Pedigree Data

OLS Regular regression
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Biological Assumption:

 EVERY "full OMIC” scan against any fixed
phenotype (a.k.a. outcome, “label’), the

vast majority of associations should be
under HO

* i.e. only a relatively small number of all
OMIC features should be true-positives



For ANY OMIC scan
Quantile-Quantile (Q-Q) plot is your BEST FRIEND

Tells when your tests not running true
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Some Model connecting Genotype to methylation, expression ultimately to

For Pedigree data

Individuals:
* i.i.d. ACROSS Pedigrees
« DEPENDENT WITHIN Pedigrees

If all data are
unrelated individuals,
Model applies to each
person (i.i.d.)

P 1 L e
erson . .
Genetic Correlations
% G1 induce Familial
Correlations (non-independence)
M2 between other heritable
Person 2 components/features
G
e2 )«
>— Ped 1
Person 3
Person 4

Ped 2




Distribution of Metabolome (LC/MS) heritabilities (h?)
for Long Life Family Study (LLFS) at Visit 1 by metabolite family
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Akbary Moghaddam V, Acharya S, Schwaiger-Haber M, Liao S, Jung WJ, Thyagarajan B, Shriver
LP, Daw EW, Saccone NL, An P, Brent MR, Patti GJ, Province MA. Construction of Multi-Modal
Transcriptome-Small Molecule Interaction Networks from High-Throughput Measurements
to Study Human Complex Traits. bioRxiv [Preprint]. 2025 Jan 23:2025.01.22.634403. doi:
10.1101/2025.01.22.634403. PMID: 39896668; PMCID: PMC11785221.

Even many exogenous exposures in the metabolome
(diet, gut microbiome products, drugs, etc.)

have high heritability:!



Outline

2. WHY? What causes the excess false-positives?

Spoiler alert. pedigrees violate the basic statistical
assumption of “i.i.d.” (independent, identically distributed) data of
Most (non-pedigree) Statistical models




Simple E.G. OLS (Ordinary Least Squares) Regression for
Complex, Heritable Trait, ¥, on an OMIC feature:
What if Data from Families not unrelateds?

(not i.i.d. independent identically distributed errors)

Those from SAME FAMILY (say siblings)
Probably (often) have Correlated Residuals

X (OMIC feature)

WHY? Because "X" is not the only cause of " /"

(all other unmodeled covars are summed to "€" and many of these are likely heritable)
Result: underestimate error variance - falsely inflated significance




Basic regression idea still holds

i'" person in k™ cluster (family)

Xik is risk factor, Yix phenotype
Yik =a + [_} Xik T €ix




Basic regression idea still holds

i'" person in k™ cluster (family)
Xik is risk factor, Yix phenotype
Yik = o+ P X + &

PROBLEM: Residuals i and g are
correlated within the same cluster (k)
but not across clusters.




What if ignore clusters?




What if ignore clusters?

1. Since E[gy]=0 for all |k,
estimates of o and (3 are unbiased
[I.e. fall + around “true” values of

iIntercept and slope with random
error]




What if ignore clusters?

1. Since E[gy]=0 for all |k,
estimates of o and (3 are unbiased
[I.e. fall + around “true” values of
iIntercept and slope with random
error]

2. BUT, because residuals
correlated, stderrs of these
estimates are biased downward
[I.e. too small]




1. Classic OLS (Ordinary Least Squares)

Point Estimates of intercept, slope are good 3 _ ( X' X)—l( X'y)
(but OLS variance estimates are too small)

2. Take observed correlations between OLS residuals
OLS (within families, not across), t0 "correct" the variance
estimates of /£

Huber-White Sandwich Estimator (Huber 1967, White 1980):

F
Vargena(B) = (X'V-1X) (Z X'V g &) 17;1Xi> (X'V-1x)
i=1

Where & =Y, - X, is vector of OLS residuals in it" of F total families,
V=Var(Y), and X, V, denote it block of X and V for that family.
Note: (¢ &) is Variance-Covariance matrix of OLS residuals in i Family

PROC MIXED in SAS USIHQ “SandW|Ch” (a.k.a. “empirical”)
Opt|0n Wlth SUBJ ECT= FAMID (i.e. pedigrees assumed independent)
or SAN DWICH package in R



I BMI regressed on RACE in Family Heart Study -

PROC REG (ignore clusters)

Param | Estimate STD T| Pr>|i
Error Value
Intercept 38.85| <.0001
nrace 2 43</D1?)2;)
EG Good point
estimates REG std errors
(Slopes, intercepts) too low EG too significant
PROC MIXED Sandwth eise posiives
Param | Pr > |t
Value

Intercept| {26.44 ¥ 1.258))665| 21.01] \, <.0001
nrace 0_1.194D 665 1.12]C0.2645)
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3. Statistical Methods & Software that correctly

analyze Pedigree Data by modeling the dependences in
pedigree data (result: no inflation of false-positives, retaining power)




Statistical Methods for Pedigree Data

A. Adjusting for general familial correlations

(both Genetic & Non-Genetic)
1. Sandwich Estimators (already talked about)
2. GEE (Generalized Estimating Equations)
3. Family Bootstrap

B. Adjusting for Genetic correlations only

TWO Basic approaches:

1. Kinship (from observed pedigrees)
2. Genomic CoVariance Matrix (GWA SNPs, WGS; captures genetic history)

MANY programs (some restricted to selected generalized models)

MLEKIN, KINSHIP2, MMAP, GENESIS, SAIGE, REGENIE,
fastGWA-GLMM, FBAT/PBAT, QTDT, ...

Almost ALL methods are Generalized Linear Mixed Models




In Regression Setting: Mixed Model
Y = XB + 2y + ¢

Response = Fixed Effects + Random Effects + Residual Err
\ o EDacn . B G N _ b oo . O aba )
{ = Response, outcome (clata)
(E.G. In(TG), SBP, CRP, Fealthy Aging Index, Omic_feature)

X = Fixed Effects Design Matrix (data)

(E.G. Age, Sex, TimeonRx, SNPs, genomic Principal Components,
OMIC features)

B = Regression Coefficients (estimates)
(slopes, intercepts)

Z = Random Effects Design matrix (data)
(E.G. FAMID, ID, ID*TIMEONRX, kinship)

y = Variance Components (estimates)

(growth curve parameters, heritability)
g = Residual Error (usually assumed i.i.d.)



Mixed Model
Yy = XB + Z'y + ¢

We also assume:

.e.
G is Var-Cov of y

R is Var-Cov of ¢
v and € are independent

Which implies that...

VAR[Y]=Z G Z’ +R

Part of Model How to specify in SAS
FIXED effects: MODEL statement (x)

Random Effects (Var-Comp): RANDOM statement (z: 6 matrix)
Residual Effects: REPEATED statement (R matrix)



G Matrix (Random Effects)
The “RANDOM” statement in PROC MIXED

For Pedigree data (one timepoint per person)

-Since PEDIGREES independent, the syntax would be:
RANDOM ...... | SUBJECT=PEDID;

Submatrix tells how
Members of PEDID=2 are
intercorrelated

O [GPEDID:k ]



Alternative Genetic Mixed Models
for Pedigrees

o G=KINSHIP  G=Genomic

matricies Covariance matrix
« Based upon pedigree  Based upon measured

relationships correlations between

1st degree people across all

2nd degree measured genotypes in

: whole dataset

nth degree (e.g. GWAS SNPs or WGS)

« Captures correlations due

 Doesn't need genotypes unknown to consangeous

Some Mixed Model Pedigree Software: matings in distant past

R programs: MLEKIN, KINSHIP2, etc.  Doesn't need pedigrees
Sand alone: MMAP (O'Connell)



“Generalized Linear Models” (GLMs)

(not to be confused with “General Linear Models”-also abbrev as “GLM”)

Model Y as a linear combination of Xs with unknown parameters, 3, specified by
 a fixed invertible “link function”, g such that E[Y|X] = u=g'(Xp
» with some variance distribution (“error*, “unexplained var") V(Y, ]/)

Maximum Likelihood is standard way to estimate/test GLMs

Y Model GLM Equation Link Variance
Function Distribution
Quantitative Regression E/Y|X/=Xp g(n)=n N[O, y=5?]
(ANOVA)  y=Xp+e¢, identity Normal
where &~NJ0,c°]
Binary Logistic P[Y|X] = exp(Xp) g(w)=In[u/(1-u)] Binomial
{0,1} Regression 1+ exp(XP) logit
E[Y|X]=1*P[Y=1|X]+0*P[Y=0\X]
=P[Y=1X]
Counts Poisson E[Y|X]=exp(XP) g(u)=Infu] Poisson
0,1,2,... Regression log

NOTE: Cox-Proporotional Hazrds Model not strictly GLM since it's semi- parametric

Bu
Ms N SAS PROC MCMC supports non-normal random effects (i.e. fralltles)

tios
but can be CPU intensive, sometimes with convergence issues )

McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. |ISBN 0-412-31760-5.



https://en.wikipedia.org/wiki/Peter_McCullagh
https://en.wikipedia.org/wiki/John_Nelder
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-412-31760-5

Generalized Estimating Equations (GEE)*

« Works for any Generalized Linear Model
« Semi-parametric

e Uses SANDWICH estimator™ to fit first 2 moments

MVN ~N[mean,Var-Cov] and estimates/tests via ML
(called Quasi-likelihood)

 Model selection via AIC
* SAS (PROC GENMOD), R (GEE, GEEPACK), Python (statsmodels)

* Works well for Correlated Data (longitudinal, pedigrees)
as long as predictors are common (based upon asymptotics)

 Works poorly for rare predictor effects

*Liang K-Y, Zeger SL. Longitudinal Data Analysis Using Generalized Linear Models. Biometrika.
1986;73(1):13-22.



Family Bootstrap
(Borecki & Province, 2008)

« Sampling unit is PEDIGREES not
iIndividuals

« Sample Pedigrees w/replacement

* If there are F families total, each bootstrap
sample has F families (but possibly
different numbers of subjects from sample
to sample!)

Borecki IB, Province MA. Genetic and genomic discovery using family

studies. Circulation. 2008 Sep 2;118(10):1057-63. doi:
10.1161/CIRCULATIONAHA.107.714592. PMID: 18765388.



RECALL previous example, that OLS (IGNORING family nature of data)
Still gives GOOD ESTIMATES of parameters, but underestimates their StdErrs
BMI regressed on RACE in Family Heart Study

PROC REG (ignore clusters)
Param | Estimate STD T| Pr>|i
Error Value
Intercept 0 676 38.85| <.0001
nraces 61 2 430. 01@
EG Good point
estimates REG std errors
(Slopes, intercepts) too low REG too significant
:)R (\ MlX_D (SandW|C false positives)
Param) DF Pr > |t|
1" Value
Intercept 1.258 0665 21.01] \ <.0001
nrace 5 1.194D 665| 1.12|C 0.2645)




Total F Families “B” Bootstrap Samples on Families
Each Sample: F Families (WITH Replacement)

Analyze each sample

Sample 1 as unrelateds: e.g. OLS!

omoO
o O OOIO.I:I

Ood pog Y= o4+pP, SNP + -
go

oo
oonO

Sample j
oo oo
oo oo

Family Boostrap lo.no mod Y= o;+p; SNP + -
works WELL with mo

Average Across Bootstraps

BBoot = mean(Bj S) Sample B

s.€.(Bgoot) = Sthev(Bi s) .Onl:l ..oo

[Beoot/S-€-(Baoot) 2 ~ X1 moo moo Y= ag+PgSNP+-

@o
— pvalueg,; bo




Family Bootstrap

Works beautifully to control Type-l error, retaining power
(but Needs many pedigrees—e.g. won't work with Amish = 1 super pedigree!)

for comparing alternative pedigree methods

13

CPU intensive
Many Applications

Borecki IB, Province MA. Genetic and genomic discovery using family studies. Circulation. 2008

Sep 2;118(10):1057-63. doi: 10.1161/CIRCULATIONAHA.107.714592. PMID: 18765388.

 Folsom AR, Pankow JS, Williams RR, Evans GW, Province MA, Eckfeldt JH. Fibrinogen, plasminogen activator inhibitor-
1, and carotid intima-media wall thickness in the NHLBI Family Heart Study. Thromb Haemost. 1998 Feb;79(2):400-4.
PMID: 9493598.

* Djoussé L, Myers RH, Coon H, Arnett DK, Province MA, Ellison RC. Smoking influences the association between
apolipoprotein E and lipids: the National Heart, Lung, and Blood Institute Family Heart Study. Lipids. 2000 Aug;35(8):827-
31. doi: 10.1007/s11745-000-0591-1. PMID: 10984105.

« Zhang Q, Feitosa M, Borecki IB. Estimating and testing pleiotropy of single genetic variant for two quantitative traits.
Genet Epidemiol. 2014 Sep;38(6):523-30. doi: 10.1002/gepi.21837. Epub 2014 Jul 12. PMID: 25044106; PMCID:
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4. Comparisons & Robustness of Pedigree Models




Various Pedigree Association Models

1. FBAT (Family-Based Association Test)
2. QTDT (Quantitative TDT)

3. Sandwich Estimator for Fams

4. Family Bootstrap

How well do they perform against one another (Monte Carlo simulation)?

Borecki IB, Province MA. Genetic and genomic discovery using family studies. Circulation. 2008 Sep
2;118(10):1057-63. doi: 10.1161/CIRCULATIONAHA.107.714592. PMID: 18765388.



Simulated Family Data

« 200 Nuclear Families with 2 children
— 800 Individuals
— In parents: Pr(AA)=0.25, Pr(AG)=0.5, Pr(GG)=0.25

« Simulated Phenotype = a + B*SNP Value + PG + ¢
Value(AA)=0, Value(AG)=0.5, Value(GG)=1
3 Cases:
1. HO: a=0, B=0
2. H1: a=0, B=0.5
3. HO w/Population Stratification: 2 groups(a,=0, a,=5), =0
200 Replications



Q-Q Plots for 4 Family Geno-Pheno Association Methods

Under HO

Rank of p-value
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Q-Q Plots for 4 Family Geno-Pheno Association Methods

Under H1

Rank of p-value

(Sandwich/Bootstrap MUCH more powerful than FBAT/QTDT). WHY?

10
09
08
07
06
05
04
03
02
01
00

]V‘ll"l[‘lIlT]IIIIIIIIII1l'IV]FIl"l[‘(l’“T‘[l"V‘l[llll]l‘ll]

00 01 02 03 04 05 06 07 08 09 10

y e  ,
Sandwich —~

p-value




Q: Why the power loss for FBAT & QTDT?
A: These two are both TRANSMISSION tests,

NOT true ASSOCIATION tests (despite the FBAT name)

 FBAT ignores the phenotypes of parents, which can contribute valuable
phenotype-genotype correlation information in true association models

 FBAT deletes entire families for which transmission is ambiguous:

G=1/1
P=100

G=1/1
P=97

G=2/2
P=12

G=2/2

P=9

G=1/1

E.G. These two families show STRONG G-P

P=102 association, but are deleted by FBAT because

G=11
P=110

G=2/2
P=13

G=2/2
P=11

transmission is ambiguous

11 2/2



Simulated Family Data: Population Stratification

Y=a+pBX+e¢

* Population A * Population B
* 100 Families * 100 Families
* Freq(AA) =0.25 * Freq(AA) =0.09
* Freq(AG) =0.5 * Freq(AG) =0.42
* Freq(GG) =0.25 * Freq(GG) =0.49
e a=0 ca=>5
[ ﬁ = 0 o B — O

Stratified Population
(False Positive Association

between Y & X)



Q-Q Plots for 4 Family Geno-Pheno Association Methods
Under HO (w/Population Stratification)

(FBAT protects well; QTDT overprotects; Sandwich somewhat; Bootstrap not at all)

Rank of p-value
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Pedigree Association Models (Common alleles)

1. FBAT (Family-Based Association Test)
« Misnamed! Really a Transmission based test, like QTDT!
 Deletes fams where transmission ambiguous

2. QTDT (Quantitative TDT)
 Are transmitted alleles correlated to phenotype?
« Similar to FBAT

3. Sandwich Estimator for Fams
« Similar to GEE model
« Some protection from Population Stratification*
« Fast

4. Family Bootstrap
 Valid under homogeneous HO for all MAF
* No protection from Population Stratification®
« CPU intensive

*But genomic Principal Component covariates work best against
Population Stratification for all methods!
Don’t need the tests themselves to correct for it (loses power)




Controlling for Genetic Drift in Analysis

EIGENSTRAT:

» Generate top Principal Components from GWAS SNPs to capture "drift" of Major
Common Haplotypes.

» Use these as Covariates PC1, PC2, ..., PCn to “correct” for Population
Stratification In mixed regression (logistic, cox) models:

Y =(a + B1*PC1 + f2*PC2 + ... + Bn*PCn) + P*SNP + e
GWAS confounders - population stratification




Q: what about RARE alleles

we get from sequencing
(also Rare OMIC features)?

A: Some Methods that work
WELL for common effects,
work POORLY for rare ones



Mixed Model (Sandwich) vs. Family Bootstrap p-values in GWAS of Family Heart Study

MAF>0.01
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Modification of the Sandwich Estimator in Generalized
Estimating Equations with Correlated Binary Outcomes in
Rare Event and Small Sample Settings

Paul Rogers, Julie Stoner#

American Joumal of Applied Mathematics and Statistics. 2015, 3(6), 243-251. DOI: 10.12691/ajams-3-6-5
Published online: November 23, 2015
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Abstract

Regression models for correlated binary outcomes are commonly fit using a
Generalized Estimating Equations (GEE) methodology. GEE uses the Liang and Zeger
sandwich estimator to produce unbiased standard error estimators for regression
coefficients in large sample settings even when the covariance structure is
misspecified. The sandwich estimator performs optimally in balanced designs when
the number of participants is large, and there are few repeated measurements. The
sandwich estimator is not without drawbacks; its asymptotic properties do not hold
in small sample settings. In these situations, the sandwich estimator is biased
downwards, underestimating the variances. In this project, a modified form for the
sandwich estimator is proposed to correct this deficiency. The performance of this

new sandwich estimator is compared to the traditional Liang and Zeger estimator as
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Statist. Med. 2000; 19:715-722

GEE Analysis of negatively correlated binary
responses: a caution

James A. Hanley"**% Abdissa Negassa® and Michael D. deB. Edwardes?

'Department of Epidemiclogy and Biostatistics, McGill University, Montreal, Canada
*Division of Clinical Epidemiology, Roval Victoria Hospital, Montreal, Canada
3Division of Epidemiology, Department of Oncelogy, McGill University, Montreal, Canada

SUMMARY

The method of generalized estimating equations has become almost standard for analysing longitudinal and
other correlated response data. However, we have found that if binary responses have less than binomial
variation over clusters, and are modelled using exchangeable correlations, prevailing software implementa-
tions may give unreliable results. Bounding the negative correlation away from its theoretical minimum may
not always be a satisfactory solution. In such instances, using the independence working correlation
structure and robust SEs 13 a more trustworthy alternative. Copyright © 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

The generalized estimating equations (GEE) approach'-? has become the method of choice for
analysing longitudinal and other correlated response data. It is now available in most statistical
packages,® 3 but some users use their own implementations, or rely on older macros.®’

In this note we relate our experience when we used a cluster sample involving binary responses

to explain the essence of the GEE approach to non-statisticians. We chose the example to allow
4+l mtnn i emanmadnmtrm s AT actadtvnmta o~ m tvtr vt vt an ] ato cteimn A rmrd A TOTEY vt 41 o
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The issue of the working correlation matrix R (x) on the GEE model estimators has been
discussed; however, little is known about the impact of the working correlation matrix
on the GEE GoF statistics. Pan (2002a) reported that models with an independent working
correlation matrix had better results than with an exchangeable correlation matrix for models
with more than two time-point outcomes and with time-varying covariates. Barnhart and
Williamson (1998) reported that their proposed GoF statistics had different performance
with different working correlation matrices.

Misspecification of the working correlation matrix R(x) did affect the performance of the
GEE GoF statistics. Type I error rates were inflated for those GoF statistics with misspec-
ified working correlations (Qrm, Om and Sy, ), and the inflation increased with mcreasing
magnitude of the departure from the misspecified working correlation (identity mafrix) to
the correctly specified working correlation.

Artificially high power was shown in some GEE GokF statistics with misspecified working
correlations due to inflated Type I error rates. Statistics with correctly specified working
correlation matrices tended to have better performance (reasonable Type I error rates and
higher power) in most cases. Nevertheless, there were some special cases. Jr and S were
robust to the working correlation matrix R(x) selection in detecting the omission of an
interaction between a cluster-specific binary covariate and a cluster-specific continuous
covariate (Model 3). Therefore, using a data-based within-cluster correlation was recom-
mended because it may be closer to the true underlying working correlation than an arbitrary
correlation matrix, such as an identity matrix. This was especially true for the Horton statis-
tics (.5). Using the Horton statistic with a misspecified (identity) working correlation matrix
(Sm) may cause extremely inflated Type I error rates, especially for the effect of detecting
the effect of the omission of observation-specific covariates.
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P-values Distributions of Different Methods
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Inflation of P-values by Method
for Burden tests of rare variants in families
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Figure 1 Q-Q plots for six different methods. O-0 plots of —log,, scaled p-values for six different methods based on 1,940 genes from 657
subjects (8 extended families) and 200 replications of guantitative trait Q2 simulated by GAW1Y under the null hypothesis. Red curves, observed
black curves, expected.

Zhang, Chung, Kraja, Borecki, Province. Methods for adjusting population structure and familial relatedness in
association test for collective effect of multiple rare variants on quantitative traits BMC Proceedings, Vol 28, 2011
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Evaluation of GENESIS, SAIGE,
REGENIE and fastGWA-GLMM
for genome-wide association
studies of binary traits in
correlated data

Anastasia Gurinovich'*, Mengze Li? Anastasia Leshchyk?,
Harold Bae®, Zeyuan Song*“, Konstantin G. Arbeev?,
Marianne Nygaard®, Mary F Feitosa’, Thomas T Perls® and
Paocla Sebastiani*
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EDepartment of Medicine, Geriatrics Section, Boston University School of Medicine, Boston, MA,
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Last paragraph of Abstract:

“The evaluation suggests that REGENIE might not be a good choice when analyzing
correlated data of a small size. fastGWA-GLMM is the most computationally efficient
compared to the other three tools, but it appears to be overly conservative when applied
to family-based data. GENESIS, SAIGE and fastGWA-GLMM produced similar, although
not identical, results, with SPA adjustment performing better than Score tests. Our
evaluation also demonstrates the importance of adjusting by full GRM in highly
correlated datasets when using GENESIS or SAIGE.”
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Correlations within Pedigrees
are not the only
important confounders
iIn OMIC analyses that can
inflate false-positives



Iterson et al. Genome Biology (2017)18:19

DOI 10.1186/513059-016-1131-9 Genome BIOIOgy

METHOD Open Access
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Controlling bias and inflation in
epigenome- and transcriptome-wide
association studies using the empirical null
distribution

Maarten van lterson'” &, Erik W. van Zwet?, the BIOS Consortium and Bastiaan T. Heijmans'

Abstract

We show that epigenome- and transcriptome-wide association studies (EWAS and TWAS) are prone to significant
inflation and bias of test statistics, an unrecognized phenomenon introducing spuricus findings if left unaddressed.
Neither GWAS-based methadology nor state-of-the-art confounder adjustment methods completely remove bias
and inflation. We propose a Bayesian method to control bias and inflation in EWAS and TWAS based on estimation of
the empirical null distribution. Using simulations and real data, we demonstrate that our method maximizes power
while properly controlling the false positive rate. We illustrate the utility of our method in large-scale EWAS and TWAS
meta-analyses of age and smoking.

Keywords: Epigenome- and transcriptome-wide association studies, Bias, Inflation, Empirical null distribution, Gibbs
sampler, Meta-analysis
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OPEN Differential gene expression
analysis based on linear mixed
model corrects false positive
inflation for studying quantitative

traits

Shizhen Tang™?, Aron 5. Buchman?, Yanling Wang? Denis Avey?, Jishu Xu?, ShinyaTasaki?,

Genome-wide Efficient Mixed Model Association (GEMMA)
Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association
studies. Nat. Genet. 44, 821-824. https://

doi. org/ 10. 1038/ ng. 2310 (2012).

» Uses fixed effect confounding covariates such as sex, age, and postmortem

interval, etc.
« Uses sample-specific mixed effect term derived from full-rank sample-sample

correlation matrix (based on all gene expressions)
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Test-statistic inflation in methylome-wide association studies

Jerry Guintivano?®, Andrey A Shabalin (", Robin F. Chan <, David R. Rubinows, Patrick F. Sullivan®d=,
Samantha Meltzer-Brody?, Karolina a Aberg (¢, and Edwin J. C. G. van den Oord©
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Stockholm, Sweden

ABSTRACT ARTICLE HISTORY
Recent years have seen a surge of methylome-wide association studies (MWAS). We observed that Received 31 January 2020
many of these studies suffer from test statistic inflation that is most likely caused by commonly  Revised 24 March 2020
used quality control {QC) pipelines not going far enough to remove technical artefacts. To support Accepted 26 March 2020
this claim, we reanalysed GEO datasets with an improved QC pipeline that reduced test-statistic KEYWORDS

inflation parameter lambda from the original mean/median of 20.16/15.17 to 3.07/1.14. DNA methylation;
Furthermore, the mean/median number of methylome-wide significant findings was reduced by epigenetics; reproducibility
65,688/57,805 loci after more thorough QC. To avoid such false positives we argue for more

extensive QC and that reporting the test-statistic inflation parameter lambda become standard for

all MWAS allowing readers to better assess the risk of false discoveries.
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Fixed effect lab technical covariates to the analysis:

1.
2.
3.

4.

d.

Bisulphite conversion percentages estimated from control probes;

Median signal intensities for methylated and unmethylated channels;

Slide and well effects that refer to the individual BeadChip arrays (slide) and the positional
effects on each array (well) which hold 12 samples each (eight samples for the EPIC array);
Principal components (PCs) of control probe values as measures of technical variation among
individual samples;

PCs of the methylation beta values which capture any remaining unmeasured confounders.

Pipeline: Shabalin AA, HattabMW, Clark SL, et al. RaMWAS: fast methylome-wide
association study pipeline for enrichment platforms. Bioinformatics. 2018;34:2283-2285.



TWAS of Forced Vital Capacity (FVC )

GIF = 1.80

base covariates: age, age 2, sex, field center < 4
Stepwise: plates -

Observed -log;oP

=
—

O 1 2 3 4
Expected —log{oP

Acharya S, Liao S, Jung WJ, Kang YS, Moghaddam VA, Feitosa MF, Wojczynski MK, Lin S, Anema JA,
Schwander K, Connell JO, Province MA, Brent MR. A methodology for gene level omics-WAS integration
identifies genes influencing traits associated with cardiovascular risks: the Long Life Family Study. Hum
Genet. 2024 Oct;143(9-10):1241-1252. doi: 10.1007/s00439-024-02701-1. Epub 2024 Sep 14. PMID:
39276247; PMCID: PMC11485042.



TWAS of Forced Vital Capacity (FVC )

s | GIF =1.31 s

base covariates: age, age "2, sex, field center, wbc, rbc,
platelets, monocytes, neutrophils, intergenic percent
Stepwise: plates

0)
1

Observed -log;oP

o) 1 2 3 4
Expected —logoP



TWAS of Forced Vital Capacity (FVC )

Observed -log4oP

fvc_lIfs

1N
|

(\V
|

GIF = 1.09

base covariates: age, age "2, sex, field center, wbc, rbc,
platelets, monocytes, neutrophils, intergenic percent
Stepwise: plates, top 10 gene expression PCs

2
Expected —log1oP

3




Akbary Moghaddam V, Acharya S, Schwaiger-Haber M, Liao S, Jung WJ, Thyagarajan B, Shriver
LP, Daw EW, Saccone NL, An P, Brent MR, Patti GJ, Province MA. Construction of Multi-Modal
Transcriptome-Small Molecule Interaction Networks from High-Throughput Measurements
to Study Human Complex Traits. bioRxiv [Preprint]. 2025 Jan 23:2025.01.22.634403. doi:
10.1101/2025.01.22.634403. PMID: 39896668; PMCID: PMC11785221.

TWAS for HOMA2 S
RNA-seq of ~

Source: White blood cells Gene expression covariates (confounders):
* Age, age?, sex, field centers

White blood cell count

White blood cell differentiation

Red blood cell count

Platelets count

Percent of intergenic reads

Credits: Sandeep Acharya from Brent Lab
* Plate no.

* Top 10 gene expression principle components



RNA-seq: TWAS QQ-Plots

20

GIF =2.86

—_
n
1

Observed —logoP

Expected -log4oP

qg-plot of TWAS with raw VST
normalized gene expression

Observed —logoP

oo
1

GIF =1.05 0

(@)]
1

.
1

N
]

0 1 2 3 4
Expected -log4oP

qg-plot of TWAS after adjusting
gene expression for the relevant
covariates



Metabolite peak correction
QQ Plot, A = 44.91

80 -

Observed -logl0(p-value)

0.0 0.5 1.0 1.5 2.0
Expected -logl0(p-value)

qg-plot of lipidome peaks after peak
normalization



Metabolomics results after covariate adjusments

Variance stabilization (log transformation)

Age, age?, sex, field centers

Batch effect, sampling, missing data (technical)
Metabolite peak intensities Medication data

Smoking habits

Physical activity (short performance battery test)

LDL and HDL for lipids

Lipids: Polars:
GIF = 1.24 - GIF = 1.11

4 o 7.5
o, g =
o oD
S £ 50-
2 Z ,
o o

0 1 2 0 1 2
Expected —logqgP Expected —log P
Phosphatidylcholine 40:6 N-acetylglycine

Phosphatidylcholine 35:1 2-Oxo-3,3-dimethylguanidine-pentanoic acid



Conclusions & Recommendations

* Analyzing Pedigree OMIC Data WILL produce excess false-
positives if you do not correct for correlated data

* Lots of methods/software for properly analyzing pedigree
OMIC data [powerful, with no (or at least less) inflation of false-positives]

*Q-Q plots are your BEST FRIEND when conducting OMIC
SCans
* Shows if your model has excess false-positives or
If you are overcorrecting for false-positives and lose power

* May tell you what you don’t want to hear
(but that is the most important time you should LISTEN TO THEM!)
* You need to FIX the problems illuminated by Q-Q plots,

not IGNORE them (include important nuisance confounders, check model
assumptions, needed data transformations, etc.)



Questions?



E.G. 2: A Study recruits
several Raclal Groups

How to model "RACE" effects?

o [Epicdemiologist: GCombingd Analyses of
ALL Races
> rlU: Reacess voolaols (Unless avidarics
ACGAINST)

* Geneticist: Separate Analyses each Race
HO: Races NOT poolable (unless evidence FOR)
For Geneticist “Race” & “Continent of Ancestry”

Worried: Population Stratification due to Genetic Drift...

What are these, and why are they a worry in association analyses?




Genetic Drift: SNP (simplest genotype)
Random Allele Frequency Changes over Time

0 05 1 0 05 1
—+—— Gent ———

Gen2 _.l—

— Gen3 —.I—
EEE— Gen K _I_
0.3

P=0.5 100,000 yrs ago s I e
P=0.8 toda — -0 today

As k — «, AF of every SNP — 0 or 1

Fitness/Selection pushes faster in one direction




Population Stratification

. Suppose X,Y data
o, ©® @ come in 2 groups
XN
0,..
................ '.’Q”.’. Red Group
o o &, Combined ¢ Corr[X,Y|Red]=0
° ° . e Group
*+,, Corr[X,Y]#0
0....
4
..’0 ° o
e, .. o
4
Te 0. > 0 °
------------------------------------------------------- 5- -.-‘” Blue Group
° oo, Corr[X,Y|Blue]=0
L 4
o 0 o,
* o %

E[X|Red] # E[X|Blue]
and
E[Y|Red] # E[Y|Blue]

In Overall Population, X & Y Strongly Correlated.
But entirely due to stratifier Red vs Blue

If don't know about (or ignore) X
Red/Blue grouping,
it is called a "Hidden Stratifier"



Why Is AGT (Angiotensin) also an Education Gene?
Important? (Analysis of multiracial FBPP Data as "One Big Study” N=11,357)

ANOVA: P=5.2x10-10 >

©
Q
@ ]
£ 4 Years ~
3 College
2
2 14.7 15.1
§ + 0.12 + 0.19
©
©
Q)
o  10% Grade |
$ ]
L
=2
I
No Formal | -
Schooling | | |
A/A A/G G/G

AGT-6 (RS5051) a well know Blood Pressure variant



Mean EDU yrs Is AGT an Education Gene? Multivariate Model
ine Stratified Analyses by Race, Study S P-val
Chin 12.2 _Q!! @ ) gg
AGT-6 0.6192
RACE 2.3x10-15

STUDY 0.7115

Japanese 17.3

GenNet HyperGen SAPPHIRe

’ GenNetHyperGen

MORAL: Genetic Drift Race diffs + Cultural/Legal EDU Race diffs —

Population Stratification — False-Positive Gene Signal for Gene
. T \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r
SChOOIIng A/A A/G G/G A/A A/G G/G A/A A/G G/G AJA A/G G/G A/JA A/G G/G A/AA/G G/G A/AA/G G/GA/AA/GG/G

AGI-6
AAllele Freq A Allele Freq A Allele Freq

Race (mmmm Blgck 85%> s I 7%, ™ jononese 83%
47% Iite 459,

GenNet HyperGe
4 Years

College -

10t Grade

Highest grade/educ level completed




"Race" is Hidden Stratifier
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# of "A" Alleles in AGT-6



Allele Frequency Differences by Population AR Applied
BIOS

ystems

Patterns of linkage disequilibrium are conserved within and between populations

HapMap Study
hYRU [V hCHB

ABI African- Europeany Chinese o
Study i s i .
Iiiliiliiiill o ggﬁ 21?: '
African O - Maghinp
0.596

aCEPH

European CE - Maghinp
aChn Genetlc Drlft IS Ublqwtous N Genome
Chinese T e e _ PR,

YR« Maphtep CEU - M 3 HCH - Maghlap 2T« Haghlap

Every one of these off-diagonal SNPs would have false-postive r
association with EDUCATION in Combined Race Analysis . 0.954

due to Population Stratification

Rt Tan e T W n s IR AT e -
YRI« Haghiep o Y X 2T . Maghlap

e N ©2005 Applied Biosystems
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