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Outline
1. FACT: Analyzing Pedigree OMIC data using standard 

statistical models/tests, causes

Severe inflation of false-positive signals



Vast Literature Documenting
Analyzing Associations of Heritable Phenotypes 

in Pedigrees assuming the standard "i.i.d." 

(independent identically distributed) statistical assumptions of 

most stat models/software, results in 

SERIOUS P-VALUE INFLATION (too many false positives)

Boerwinkle, Chakraborty, & Sing. The use of measured genotype information in the  analysis of quantitative 

phenotypes in man. I. Models and analytical methods Ann. Hum. Genet., 50, 181-194, 1986

Siegmund, ..., Province.  A Frailty Approach for Modelling Diseases with Variable Age of Onset in Families: 

The NHLBI Family Heart Study.  Statistics in Medicine, 18, 1517-1528, 1999

Borecki & Province. Genetic and Genomic Discovery Using Family Studies Circulation, 118:1057-1063 2008

Astle & Balding. Population Structure and Cryptic Relatedness in Genetic Association Studies, Statistical 

Science Vol. 24, No. 4, 451–471, 2009

Eu-ahsunthornwattana, ..., Cordell. Comparison of Methods to Account for Relatedness in Genome-Wide 

Association Studies with Family-Based Data, PLOS Genetics, Vol 10, Issue 7, 2014

Zhang, . . ., Province. Methods for adjusting population structure and familial relatedness in association test 

for collective effect of multiple rare variants on quantitative traits. BMC Proc. Nov 29;5 Suppl 9(Suppl 9):S35. 

2011



Not just a problem with "regression" type models











P-value Distribution 
GWAS Analysis of Quantitative Pedigree Data 

OLS Regular regression

(family ignored)
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*www.hopkinsmedicine.org/general-internal-medicine/research/gene-star



Biological Assumption:

• EVERY “full OMIC” scan against any fixed 

phenotype (a.k.a. outcome, “label”), the 

vast majority of associations should be

under H0 

• i.e. only a relatively small number of all 

OMIC features should be true-positives



For ANY OMIC scan

Quantile-Quantile (Q-Q) plot is your BEST FRIEND
Tells when your tests not running true
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For Pedigree data

Individuals: 
• i.i.d. ACROSS Pedigrees

• DEPENDENT WITHIN Pedigrees
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Some Model connecting Genotype to methylation, expression, ultimately to phenotype

If all data are

unrelated individuals,

Model applies to each 

person (i.i.d.)

Genetic Correlations 

induce Familial 

Correlations (non-independence) 

between other heritable 

components/features



Distribution of Metabolome (LC/MS) heritabilities (h2) 

for Long Life Family Study (LLFS) at Visit 1 by metabolite family

Akbary Moghaddam V, Acharya S, Schwaiger-Haber M, Liao S, Jung WJ, Thyagarajan B, Shriver 

LP, Daw EW, Saccone NL, An P, Brent MR, Patti GJ, Province MA. Construction of Multi-Modal 

Transcriptome-Small Molecule Interaction Networks from High-Throughput Measurements 

to Study Human Complex Traits. bioRxiv [Preprint]. 2025 Jan 23:2025.01.22.634403. doi: 

10.1101/2025.01.22.634403. PMID: 39896668; PMCID: PMC11785221.

Even many exogenous exposures in the metabolome 
(diet, gut microbiome products, drugs, etc.) 

have high heritability!
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2. WHY? What causes the excess false-positives? 

Spoiler alert: pedigrees violate the basic statistical 

assumption of “i.i.d.” (independent, identically distributed) data of 

most (non-pedigree) statistical models



X (OMIC feature)

Y

a=intercept

b=slope

Simple E.G.  OLS (Ordinary Least Squares) Regression for

Complex, Heritable Trait, Y, on an OMIC feature:  

What if Data from Families not unrelateds?

(not i.i.d. independent identically distributed errors)

Those from SAME FAMILY (say siblings)

Probably (often) have Correlated Residuals

Y = a + bX + e

WHY? Because "X" is not the only cause of "Y" 
(all other unmodeled covars are summed to "e" and many of these are likely heritable)

Result:  underestimate error variance→ falsely inflated significance













2. Take observed correlations between OLS residuals

OLS (within families, not across), to "correct" the variance 

estimates of b: 

Huber-White Sandwich Estimator (Huber 1967, White 1980):

Where                        is vector of OLS residuals in ith of F total families, 

V=Var(Y), and Xi, Vi denote ith block of X and V for that family. 

Note:                is Variance-Covariance matrix of OLS residuals in ith Family

1. Classic OLS (Ordinary Least Squares)
Point Estimates of intercept, slope are good

(but OLS variance estimates are too small)
( ) ( )YXXX ''ˆ 1−

=b

PROC MIXED in SAS using “Sandwich” (a.k.a. “empirical”)

option with SUBJECT=FAMID (i.e. pedigrees assumed independent) 

or SANDWICH package in R

be ˆˆ
iii XY −=
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BMI regressed on RACE in Family Heart Study

REG Good point

estimates

(Slopes, intercepts)

REG std errors

too low REG too significant

(false positives)
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3. Statistical Methods & Software that correctly 

analyze Pedigree Data by modeling the dependences in 

pedigree data (result: no inflation of false-positives, retaining power) 



Statistical Methods for Pedigree Data

A. Adjusting for general familial correlations
(both Genetic & Non-Genetic)

1. Sandwich Estimators (already talked about)

2. GEE (Generalized Estimating Equations)

3. Family Bootstrap

B. Adjusting for Genetic correlations only

TWO Basic approaches:

1. Kinship (from observed pedigrees)

2. Genomic CoVariance Matrix (GWA SNPs, WGS; captures genetic history)

MANY programs (some restricted to selected generalized models)

MLEKIN, KINSHIP2, MMAP, GENESIS, SAIGE, REGENIE, 

fastGWA-GLMM, FBAT/PBAT, QTDT, …

Almost ALL methods are Generalized Linear Mixed Models



In Regression Setting: Mixed Model

Y  =   X b +   Z g        + e
Response = Fixed Effects + Random Effects +  Residual Err

Y = Response, outcome (data)
(E.G.  ln(TG), SBP, CRP, Healthy Aging Index, Omic_feature)

X = Fixed Effects Design Matrix (data)
(E.G. Age, Sex, TimeonRx, SNPs, genomic Principal Components, 

OMIC features)

b = Regression Coefficients (estimates)
(slopes, intercepts)

Z = Random Effects Design matrix (data)
(E.G. FAMID, ID, ID*TIMEONRx, kinship)

g = Variance Components (estimates)
(growth curve parameters, heritability)

e = Residual Error (usually assumed i.i.d.)



Mixed Model

Y  =   X b +   Z g        + e
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VAR[Y] = Z G Z’ + R

i.e.

G is Var-Cov of g

R is Var-Cov of e

g and e are independent

Part of Model How to specify in SAS

FIXED effects:   MODEL statement (X)

Random Effects (Var-Comp): RANDOM statement (Z: G matrix)

Residual Effects: REPEATED statement (R matrix)

We also assume:

Which implies that…



G Matrix (Random Effects)

The “RANDOM” statement in PROC MIXED
For Pedigree data (one timepoint per person)
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•Since  PEDIGREES independent , the syntax would be:

RANDOM …… / SUBJECT=PEDID;

Submatrix tells how 

Members of PEDID=2 are 

intercorrelated



Alternative Genetic Mixed Models

for Pedigrees

• G=KINSHIP 

matricies
• Based upon pedigree 

relationships

1st degree

2nd degree

⁞

nth degree

• Doesn't need genotypes

• G=Genomic 

Covariance matrix
• Based upon measured 

correlations between 

people across all 

measured genotypes in 

whole dataset

(e.g. GWAS SNPs or WGS)

• Captures correlations due 

unknown to consangeous

matings in distant past

• Doesn't need pedigrees
Some Mixed Model Pedigree Software:

R programs: MLEKIN, KINSHIP2, etc.

Sand alone: MMAP (O'Connell)



“Generalized Linear Models” (GLMs)
(not to be confused with “General Linear Models”-also abbrev as “GLM”)

Model Y as a linear combination of Xs with unknown parameters, b, specified by 

• a fixed invertible “link function”, g such that  E[Y|X] = m = g-1(Xb) 

• with some variance distribution ("error“, “unexplained var") V(Y; g)

Maximum Likelihood is standard way to estimate/test GLMs

McCullagh, Peter; Nelder, John (1989). Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 0-412-31760-5.

NOTE: Cox-Proporotional Hazrds Model not strictly GLM, since it’s semi-parametric.

But parametric part (model proportional hazard ratios, given non-parametric marginal K-

M survival distribution) is similar to GLM logistic (hazard-ratios instead of odds-ratios)In SAS PROC MCMC supports non-normal random effects (i.e. frailties), 

but can be CPU intensive, sometimes with convergence issues

https://en.wikipedia.org/wiki/Peter_McCullagh
https://en.wikipedia.org/wiki/John_Nelder
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-412-31760-5


Generalized Estimating Equations (GEE)*

• Works for any Generalized Linear Model

• Semi-parametric

• Uses SANDWICH estimator* to fit first 2 moments 

MVN ~N[mean,Var-Cov] and estimates/tests via ML 
(called Quasi-likelihood)

• Model selection via AIC

• SAS (PROC GENMOD), R (GEE, GEEPACK), Python (statsmodels)

• Works well for Correlated Data (longitudinal, pedigrees) 

as long as predictors are common (based upon asymptotics)

• Works poorly for rare predictor effects

*Liang K-Y, Zeger SL. Longitudinal Data Analysis Using Generalized Linear Models. Biometrika. 

1986;73(1):13–22.



Family Bootstrap
(Borecki & Province, 2008)

• Sampling unit is PEDIGREES not 

individuals

• Sample Pedigrees w/replacement

• If there are F families total, each bootstrap 

sample has F families (but possibly 

different numbers of subjects from sample 

to sample!)

Borecki IB, Province MA. Genetic and genomic discovery using family 

studies. Circulation. 2008 Sep 2;118(10):1057-63. doi: 

10.1161/CIRCULATIONAHA.107.714592. PMID: 18765388.



RECALL previous example, that OLS (IGNORING family nature of data)

Still gives GOOD ESTIMATES of parameters, but underestimates their StdErrs

BMI regressed on RACE in Family Heart Study

REG Good point

estimates

(Slopes, intercepts)

REG std errors

too low REG too significant

(false positives)



Total F Families “B” Bootstrap Samples on Families
Each Sample:  F Families (WITH Replacement)

Analyze each sample

as unrelateds: e.g. OLS!Sample 1

Y =   a1 + b1 SNP + ...

Sample 1

Sample j

..
.

..
.

Sample B

Y =   aB + bB SNP + ...

Sample B

Average Across Bootstraps

bBoot = mean(bj s)

s.e.(bBoot) = StdDev(bj s)

bBoot/s.e.(bBoot) ]
2  ~ c1

2

→ pvalueBoot

Sample j

Y =   aj + bj SNP + ...Family Boostrap

works WELL with 

ANY Model (GLMMs)



Family Bootstrap
• Works beautifully to control Type-I error, retaining power 

(but Needs many pedigrees—e.g. won’t work with Amish = 1 super pedigree!)

• “Gold Standard” for comparing alternative pedigree methods

• CPU intensive

• Many Applications
• Borecki IB, Province MA. Genetic and genomic discovery using family studies. Circulation. 2008 

Sep 2;118(10):1057-63. doi: 10.1161/CIRCULATIONAHA.107.714592. PMID: 18765388.
• Folsom AR, Pankow JS, Williams RR, Evans GW, Province MA, Eckfeldt JH. Fibrinogen, plasminogen activator inhibitor-

1, and carotid intima-media wall thickness in the NHLBI Family Heart Study. Thromb Haemost. 1998 Feb;79(2):400-4. 

PMID: 9493598.

• Djoussé L, Myers RH, Coon H, Arnett DK, Province MA, Ellison RC. Smoking influences the association between 

apolipoprotein E and lipids: the National Heart, Lung, and Blood Institute Family Heart Study. Lipids. 2000 Aug;35(8):827-

31. doi: 10.1007/s11745-000-0591-1. PMID: 10984105.

• Zhang Q, Feitosa M, Borecki IB. Estimating and testing pleiotropy of single genetic variant for two quantitative traits. 

Genet Epidemiol. 2014 Sep;38(6):523-30. doi: 10.1002/gepi.21837. Epub 2014 Jul 12. PMID: 25044106; PMCID: 

PMC4169079.

• Feitosa M, Kuipers A, Wojczynski M, Wang L, Perls T, Christensen K, Zmuda J, Province M. Long Life Family Study 

Shows Reduced Coronary Artery Disease Despite High Polygenic Hazard Scores. Innov Aging. 2020 Dec 16;4(Suppl

1):212. doi: 10.1093/geroni/igaa057.685. PMCID: PMC7741003.

• Feitosa MF, Kuipers AL, Wojczynski MK, Wang L, Barinas-Mitchell E, Kulminski AM, Thyagarajan B, Lee JH, Perls T, 

Christensen K, Newman AB, Zmuda JM, Province MA. Heterogeneity of the Predictive Polygenic Risk Scores for 

Coronary Heart Disease Age-at-Onset in Three Different Coronary Heart Disease Family-Based Ascertainments. Circ

Genom Precis Med. 2021 Jun;14(3):e003201. doi: 10.1161/CIRCGEN.120.003201. Epub 2021 Apr 12. PMID: 33844929; 

PMCID: PMC8214825.

• Song Z, Gunn S, Monti S, Peloso GM, Liu CT, Lunetta K, Sebastiani P. Learning Gaussian Graphical Models from 

Correlated Data. bioRxiv [Preprint]. 2024 Apr 5:2024.04.03.587948. doi: 10.1101/2024.04.03.587948. PMID: 38617340; 

PMCID: PMC11014549.
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4. Comparisons & Robustness of Pedigree Models



Various Pedigree Association Models

1. FBAT (Family-Based Association Test)

2. QTDT (Quantitative TDT)

3. Sandwich Estimator for Fams

4. Family Bootstrap 

How well do they perform against one another (Monte Carlo simulation)?

Borecki IB, Province MA. Genetic and genomic discovery using family studies. Circulation. 2008 Sep 

2;118(10):1057-63. doi: 10.1161/CIRCULATIONAHA.107.714592. PMID: 18765388.



Simulated Family Data
• 200 Nuclear Families with 2 children 

– 800 Individuals

– In parents: Pr(AA)=0.25, Pr(AG)=0.5, Pr(GG)=0.25

• Simulated Phenotype = α + β*SNP Value + PG + ε

Value(AA)=0, Value(AG)=0.5, Value(GG)=1

3 Cases:

1. H0: α=0, β=0

2. H1: α=0,  β=0.5

3. H0 w/Population Stratification: 2 groups(α1=0, α2=5), β=0

• 200 Replications



(all 4 methods protect against false positives analyzing families)
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Under H0

Q-Q Plots for 4 Family Geno-Pheno Association Methods

p-value

Family

Bootstrap FBAT QTDT Sandwich



Q-Q Plots for 4 Family Geno-Pheno Association Methods

(Sandwich/Bootstrap MUCH more powerful than FBAT/QTDT).  WHY?

Under H1
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Q:  Why the power loss for FBAT & QTDT?
A:  These two are both TRANSMISSION tests, 

NOT true ASSOCIATION tests (despite the FBAT name)

• FBAT ignores the phenotypes of parents, which can contribute valuable 

phenotype-genotype correlation information in true association models

• FBAT deletes entire families for which transmission is ambiguous:

G=1/1

P=100
G=1/1

P=102

G=1/1

P=97
G=1/1

P=110

G=2/2

P=12
G=2/2

P=13

G=2/2

P=9
G=2/2

P=11

E.G.  These two families show STRONG G-P 

association, but are deleted by FBAT because 

transmission is ambiguous

P

1/1                        2/2

G



Simulated Family Data: Population Stratification

Y = a + b X + e

• Population A

• 100 Families

• Freq(AA) = 0.25

• Freq(AG) = 0.5

• Freq(GG) = 0.25

• α = 0

• β = 0

• Population B

• 100 Families

• Freq(AA) = 0.09

• Freq(AG) = 0.42

• Freq(GG) = 0.49

• α = 5

• β = 0

Stratified Population
(False Positive Association 

between Y & X)



Q-Q Plots for 4 Family Geno-Pheno Association Methods

(FBAT protects well; QTDT overprotects; Sandwich somewhat; Bootstrap not at all)

Under H0 (w/Population Stratification)
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Pedigree Association Models  (Common alleles)
1. FBAT (Family-Based Association Test)

• Misnamed!  Really a Transmission based test, like QTDT!

• Deletes fams where transmission ambiguous

2. QTDT (Quantitative TDT)

• Are transmitted alleles correlated to phenotype?

• Similar to FBAT

3. Sandwich Estimator for Fams

• Similar to GEE model

• Some protection from Population Stratification*

• Fast

4. Family Bootstrap 

• Valid under homogeneous H0 for all MAF

• No protection from Population Stratification* 

• CPU intensive

*But genomic Principal Component covariates work best against 

Population Stratification for all methods!  

Don’t need the tests themselves to correct for it (loses power)



Controlling for Genetic Drift in Analysis
EIGENSTRAT:  

• Generate top Principal Components from GWAS SNPs to capture "drift" of Major 

Common Haplotypes.   

• Use these as Covariates PC1, PC2, …, PCn to “correct” for Population 

Stratification  In mixed regression (logistic, cox) models:

Y = (a + b1*PC1 + b2*PC2 + … + bn*PCn) +    b*SNP + e



Q: what about RARE alleles 

we get from sequencing

(also Rare OMIC features)?

A:  Some Methods that work 

WELL for common effects, 

work POORLY for rare ones



Under H1

Under H0 with Population Stratification

Under H0:

Sandwich biased toward false 

positives for Rare Alleles.

Bootstrap is Correct.

Under H0:

Sandwich & Bootstrap give 

similar (correct) results for 

Common Alleles.

Sandwich Model

Sandwich Model

MAF>0.01

MAF<0.01
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Mixed Model (Sandwich) vs. Family Bootstrap p-values in GWAS of Family Heart Study









P-value Distribution 
Analysis of Quantitative Data 

GEE Regression 
(Generalized Estimating 

Equations)

OLS Regular regression

(family ignored)

GeneSTAR

Data

(epinephrine )

Simulated

Data



P-value Diagnosis of GEE
(for Quantitative Trait)

P-value 

Distribution

-LOG10(P)

QQ Plot

MAF>0.05                                              MAF<0.05                         



P-values Distributions of Different Methods
(for MAF <0.05)*

OLS

Regression

Family

Bootstrap

Kinship

Mixed

RegPCA Sandwich

Mixed
GEE

*NOTE:  Exact MAF when “Rare” is problem is SAMPLE-SIZE dependent



Inflation of P-values by Method 

for Burden tests of rare variants in families

Zhang, Chung, Kraja, Borecki, Province.  Methods for adjusting population structure and familial relatedness in 

association test for collective effect of multiple rare variants on quantitative traits  BMC Proceedings, Vol 28, 2011



Last paragraph of Abstract:

“The evaluation suggests that REGENIE might not be a good choice when analyzing

correlated data of a small size. fastGWA-GLMM is the most computationally efficient

compared to the other three tools, but it appears to be overly conservative when applied

to family-based data. GENESIS, SAIGE and fastGWA-GLMM produced similar, although

not identical, results, with SPA adjustment performing better than Score tests. Our

evaluation also demonstrates the importance of adjusting by full GRM in highly

correlated datasets when using GENESIS or SAIGE.”





Correlations within Pedigrees 

are not the only 

important confounders

in OMIC analyses that can 

inflate false-positives









Genome-wide Efficient Mixed Model Association (GEMMA)
Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association 

studies. Nat. Genet. 44, 821–824. https://

doi. org/ 10. 1038/ ng. 2310 (2012).

• Uses fixed effect confounding covariates such as sex, age, and postmortem 

interval, etc.

• Uses sample-specific mixed effect term derived from full-rank sample-sample 

correlation matrix (based on all gene expressions)



GEMMA

OLS Reg





Fixed effect lab technical covariates to the analysis: 
1. Bisulphite conversion percentages estimated from control probes; 

2. Median signal intensities for methylated and unmethylated channels; 

3. Slide and well effects that refer to the individual BeadChip arrays (slide) and the positional 

effects on each array (well) which hold 12 samples each (eight samples for the EPIC array); 

4. Principal components (PCs) of control probe values as measures of technical variation among 

individual samples;

5. PCs of the methylation beta values which capture any remaining unmeasured confounders.

Pipeline: Shabalin AA, HattabMW, Clark SL, et al. RaMWAS: fast methylome-wide 

association study pipeline for enrichment platforms. Bioinformatics. 2018;34:2283–2285.



base covariates: age, age ^2, sex, field center
Stepwise: plates

TWAS of Forced Vital Capacity (FVC )

Acharya S, Liao S, Jung WJ, Kang YS, Moghaddam VA, Feitosa MF, Wojczynski MK, Lin S, Anema JA, 
Schwander K, Connell JO, Province MA, Brent MR. A methodology for gene level omics-WAS integration 
identifies genes influencing traits associated with cardiovascular risks: the Long Life Family Study. Hum 
Genet. 2024 Oct;143(9-10):1241-1252. doi: 10.1007/s00439-024-02701-1. Epub 2024 Sep 14. PMID: 
39276247; PMCID: PMC11485042.



base covariates: age, age ^2, sex, field center, wbc, rbc, 
platelets, monocytes, neutrophils, intergenic percent
Stepwise: plates

TWAS of Forced Vital Capacity (FVC )



base covariates: age, age ^2, sex, field center, wbc, rbc, 
platelets, monocytes, neutrophils, intergenic percent
Stepwise: plates, top 10 gene expression PCs

TWAS of Forced Vital Capacity (FVC )



RNA-seq
Source: White blood cells

• Age, age2, sex, field centers

• White blood cell count

• White blood cell differentiation

• Red blood cell count

• Platelets count

• Percent of intergenic reads

• Plate no.

• Top 10 gene expression principle components

Gene expression covariates (confounders):

Credits: Sandeep Acharya from Brent Lab

TWAS for HOMA2_S

Akbary Moghaddam V, Acharya S, Schwaiger-Haber M, Liao S, Jung WJ, Thyagarajan B, Shriver 

LP, Daw EW, Saccone NL, An P, Brent MR, Patti GJ, Province MA. Construction of Multi-Modal 

Transcriptome-Small Molecule Interaction Networks from High-Throughput Measurements 

to Study Human Complex Traits. bioRxiv [Preprint]. 2025 Jan 23:2025.01.22.634403. doi: 

10.1101/2025.01.22.634403. PMID: 39896668; PMCID: PMC11785221.



RNA-seq: TWAS QQ-Plots

qq-plot of TWAS with raw VST 
normalized gene expression

qq-plot of TWAS after adjusting 
gene expression for the relevant 
covariates



Metabolite peak correction

qq-plot of lipidome peaks after peak 
normalization 



Metabolomics results after covariate adjusments

Lipids:

Phosphatidylcholine 40:6

Phosphatidylcholine 35:1

Polars:

N-acetylglycine

2-Oxo-3,3-dimethylguanidine-pentanoic acid

Metabolite peak intensities

Variance stabilization (log transformation)

Age, age2, sex, field centers

Batch effect, sampling, missing data (technical)

Medication data

Smoking habits

Physical activity (short performance battery test)

LDL and HDL for lipids



Conclusions & Recommendations

• Analyzing Pedigree OMIC Data WILL produce excess false-
positives if you do not correct for correlated data

• Lots of methods/software for properly analyzing pedigree 
OMIC data [powerful, with no (or at least less) inflation of false-positives]

• Q-Q plots are your BEST FRIEND when conducting OMIC 
scans
• Shows if your model has excess false-positives or 
If you are overcorrecting for false-positives and lose power 

• May tell you what you don’t want to hear
(but that is the most important time you should LISTEN TO THEM!)

• You need to FIX the problems illuminated by Q-Q plots, 
not IGNORE them (include important nuisance confounders, check model 
assumptions, needed data transformations, etc.)



Questions?



E.G. 2: A Study recruits

How to model "RACE" effects?

• H0:  Races poolable (unless evidence 

AGAINST)

• Geneticist: Separate Analyses each Race

H0: Races NOT poolable (unless evidence FOR)

For Geneticist “Race”  “Continent of Ancestry”

Worried:  Population Stratification due to Genetic Drift…
What are these, and why are they a worry in association analyses?



Genetic Drift:  SNP (simplest genotype)

Random Allele Frequency Changes over Time

0     0.5      1
Gen1

Gen2

Gen3

:

Gen K

0     0.5      1

0.8 0.3

0.49 0.52

P=0.5 100,000 yrs ago

P=0.8 today

P=0.5 100,000 yrs ago

P=0.3 today

75As k → ∞, AF of every SNP → 0 or 1
Fitness/Selection pushes faster in one direction



Population Stratification

Red Group

Corr[X,Y|Red]=0

Blue Group

Corr[X,Y|Blue]=0

Combined

Group

Corr[X,Y]≠0

X

Y

In Overall Population, X & Y Strongly Correlated.

But entirely due to stratifier Red vs Blue

E[X|Red] ≠ E[X|Blue] 

and 

E[Y|Red] ≠ E[Y|Blue]

If don't know about (or ignore) 

Red/Blue grouping, 

it is called a "Hidden Stratifier"

Suppose X,Y data

come in 2 groups



Overall
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AGT G6A

A/A A/G G/G

A/A A/G G/G

No Formal
Schooling

10th Grade

4 Years
College

ANOVA:  P=5.2x10-10

13.9
+ 0.10

14.7
+ 0.12

15.1
+ 0.19

(Analysis of multiracial FBPP Data as “One Big Study” N=11,357)

AGT-6 (RS5051) a well know Blood Pressure variant

Is AGT (Angiotensin)  also an Education Gene?Why

Important?



By Network, Race Strata

Race Black Chinese Japanese
Other White
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AGT-6

A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G

GenNet HyperGen SAPPHIRe GenNet HyperGen

GenNetHyperGen

No Formal
Schooling

10th Grade

4 Years
College

A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G A/A A/G G/G

Is AGT an Education Gene?

Stratified Analyses by Race, Study

Multivariate Model
Source       P-value
AGT-6        0.6192
RACE          2.3x10-15

STUDY       0.7115

MORAL:  Genetic Drift Race diffs + Cultural/Legal EDU Race diffs → 

Population Stratification → False-Positive Gene Signal for Gene

A Allele Freq

85%

47%

A Allele Freq

87%

45%

A Allele Freq

83%

Mean EDU yrs

Chinese 12.2

Black       14.0

White       15.6

Japanese 17.3



"Race" is Hidden Stratifier

Whites

Corr=0

Blacks

Corr=0

Combined

Group

Corr≠0

# of "A" Alleles in AGT-6

Edu



80

Genetic Drift is Ubiquitous in Genome

Every one of these off-diagonal SNPs would have false-postive

association with EDUCATION in Combined Race Analysis

due to Population Stratification

African                         European Chinese                                   Japanese

African

European

Chinese

Japanese

HapMap Study

Allele Frequency Differences by Population

ABI 

Study


